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Abstract—This paper covers an introduction to the Quantum
Computer World and explains its basic concepts and ideas to
understand the principles of this technology. In addition, it
addresses and explains some of its most tangible applications
nowadays and points out how these ones are going to be developed
and implemented in the near future. Moreover, this paper reflects
the experimental performance of the IBM’s Quantum Computer
Cloud Lab, an environment designed to interact with IBM’s
Quantum Computer using the Jupyter Notebook interface and
Python. The results obtained for these experiments are not as
expected and therefore, the daily use of this software is not
recommend since better run-times can be obtained using regular
personal computers.

Index Terms—IBM Quantum Lab, Quantum Computing,
Quantum Computing Performance, Introduction to Quantum
Computing.

I. INTRODUCTION

Quantum computing opens new realms to technology in
ways that we had never imagined before. This new world is
based on the foundations of Quantum Mechanics, and our un-
derstanding is crucial to develop these new types of machines.
Quantum Computation terminates Moore’s Law (computer
power doubles every eighteen months, valid since 1965) [1]
since we cannot use silicon anymore to develop better classical
machines [2]. There exists an ultimate limit, dictated by the
Laws of Thermodynamics and Quantum Physics which was
predicted by Moore. This fundamental limit lies on the size
of electronic microprocessors and this is dictated by “the speed
of light and atomic nature of matter”, Stephen Hawking.

A quantum computer is not an enhanced classical su-
percomputer which its functioning is based on bits, but a
completely new different type of computer which uses the
super positioning of bits, called qubits. Using the double nature
of the spin of an electron, it allows to perform certain types of
computations more efficiently. It is fundamental to understand
these computers do not follow the laws of Classical Mechanics
because these ones are not able to describe and to understand

the quantum world. Richard Feynman, at the MIT Physics
of Computation Conference in 1981, stated: “Nature isn’t
classical. . . and if you want to make a simulation of Nature,
you’d better make it quantum mechanical” [3].

These machines use the principles of the Quantum theory.
They can accurately compute reality, and they will eventually
let us travel beyond the classical computer limits. They can
perform calculations in parallel, in millions of different parallel
universes of probability and make them revel a result when it is
obtained in one of them. This works through the use of qubits,
which besides super positioning each other they interact with
each other at the same time. As stated before, they are not
classical bits. A bit may either be 0 or 1, although a qubit, or
quantum bit, may be 0, 1, both at the same time, or neither of
them. These concepts and their functioning will be explained
in the next sections.

Quantum Computing has a wide variety of uses and appli-
cations such as the creation of enhanced machine learning
algorithms, the improvement and training of neuronal net-
works, the calculation and simulation of cancer propagation,
the calculation and replication of molecular reactions, the
ability to quantize cybersecurity and blockchain algorithms,
the improvement of financial modeling or the rapid creation
of solutions for unsolved mathematical models, among others
[4].

II. RELATED WORK

Research about the impact of quantum computing technol-
ogy on future developments addresses the current information
about quantum computers and how the used of these ones
can impact other types of scientific developments. Nowadays,
it is an important field in which many high-technological
companies such as IBM, Google or Intel are investing a
significant amount of money to develop this technology. Ac-
cording to the authors, at this time one of the main motivation
for certain companies to develop quantum computers is to



break public key cryptography with the scheme of RSA which
is a type of encryption to protect almost any data such as
text messages, connection between cell phones and the Inter-
net. Regarding the plans for the future, this paper mentions
the need of researchers to develop quantum computers with
lower operating temperatures so one day these machines may
become frequently used cloud service computers. Quantum
computing is also mostly used for scientific purposes regarding
computer science, physics, biology, medicine, and engineering.
In addition, it is important to highlight the limitations and
the work that still need to be done in order to discover
more properties of quantum computing. There is a need of a
standardized programming language and a compiler in order to
organize and structure the way in which computer scientists
write code to communicate with the quantum processor. It
could be said that we are the beginning of a new era of
computation, and it could be comparable to the beginning of
classical computer development at the end of the 20th century
[5].

Developing, programming and constructing a quantum com-
puter is an extremely complex task. Quantum Physics is a field
of study in science which has been recently developed. In
addition, nowadays our understanding about it is short, and its
math is complex. The Quantum world does not behave as the
world we can see, and Classical Physics is able to explain. This
makes quantum computers difficult to build and understand.
Nevertheless, the process of developing a quantum computer is
similar to a classical one. Processors, memory, disk, compilers,
and machine language are needed to develop these machines.
The compiler and other high-level elements run on a standard
computing system. The machine language instructions are
translated via a digital control unit to analog control signals,
like the voltage pulses and microwave bursts, which are sent
to the qubits via conventional transmission lines. The signals
for qubit control are generated using conventional electronics.
Although, we define a qubit as a microwave function [?], and
it can be written as a linear combination of states (0 or 1, ON
or OFF), using the next quantum function (Equation 1):

|ψ >= α|0 > +β|1 >

As it can be observed, a qubit is strictly described as a
wave. The equation encloses the classical states of a bit, 0 or
1, but they are accompanied by the complex numbers “a” and
“b”. This quantum characteristic will allow a qubit to behave
as a linear combination of both states of bit. It is able to be
either 0 or 1, both at the same time, or maybe neither of them.
Note these qubit values are converted to single bit values, for
a qubit in 0 or 1. This could make obvious that a classical
system approach is required to successfully design and operate
a quantum computer, within which the particular qubits are
only one part of the entire system, and therefore the bulk of
the system is classical. To urge a way of the number of qubits
needed to outperform classical technology, we note that storing
the state of just 50 quantum bits already requires a mem-
ory larger than one of the today’s most powerful (classical)

supercomputers. Every additional qubit doubles the memory
(and the processing power) that a classical supercomputer
requires to calculate the behavior of the qubits. This enables
specific computational tasks that are beyond the facility of
supercomputers, like simulating quantum chaotic evaluations
or cancer propagation, to be solved using 50-qubit systems.
The superposition of quantum qubits opens the possibility to
make extremely complex probability calculations based on the
Quantum Theory.

Moreover, we encounter the concept of Trapped nuclear
particles that give one of the main actual stages for carrying
out a completely practical quantum computer [6], here a
programmable quantum computer model was illustrated [7],
and its presentation was contrasted to a superconducting
quantum computer [8]. Trapped particles, single molecules
with an electron eliminated (consequently, nuclear particles)
are utilized to address the qubit, by choosing two interior
conditions of the iota. Such particles can be caught, regularly
looking like a straight chain, in a design that gives satisfactory
electromagnetic fields to bind the particles in an ultrahigh
vacuum climate. Current particle traps are made on silicon
substrates utilizing micro fabrication innovation [9].

In addition to this, recently quantum reenactments have
further been acquiring consideration with regards to significant
uses of quantum processing. First noted by Feynman [10]
and Manin, a quantum computer is required to be especially
appropriate for reenacting different quantum mechanical mar-
vels, similar to how an old style computer is valuable for
reenacting different traditional mechanical wonders. A large
group of fascinating issues that are not in any case realized
how to address proficiently with traditional computers might
be effectively tackled with quantum reenactments performed
on a quantum computer. A few examples include, in in-
creasing order of difficulty and impact, this follows: 1) more
profound comprehension of many body physical science and
emphatically corresponded matter, with potential applications
in the plan of room-temperature superconductors or materials
with good electrical properties; 2) highly-accurate chemistry
computations for growing new impetuses and synthetic cycles,
with significant applications, for example, finding a swap for
the Haber process for nitrogen fixation (NF) utilized in the
synthesis of fertilizers; 3) large scale, exceptionally precise
sub-atomic elements reproductions to contemplate issues in
protein folding and drug design.

III. THEORY AND ENCRYPTION

1) Quantum Computing Performance Theory: The prin-
cipal goal of this paper is to analyze and compare the
performance that a quantum computer can have compared
to a classical computer. The idea of quantum computers
was introduced by thinking that it could be possible to
reduce the time complexity of algorithms and then perform
faster operations that could transform several science fields
such as biology, chemistry, and material research because of
the revolutionary computational power. In order to introduce
this power to the world, researchers have been developing



Quantum Processing Units (QPU) that could be implemented
in a High Performance Computer to access the quantum
computing technology. However some of the features that
should be incorporated in those QPU’s have very specific
settings and more research is needed to come up with a proper
configuration [11]. Indeed, the important question and concern
is to figure out how much faster a quantum computer can be
and if it is worth to spend so many resources in the expensive
development process. The way in which it is proven that a
quantum computer has a superior processing power and that
it can achieve tasks that a classical computer cannot is with
quantum supremacy. In order to achieve quantum supremacy,
testing is needed with a given circuit to run it in the quantum
computer. Afterwards, certain simulations have to be created
for the classical computer to emulate and replicate what has
been done in the high performance computer. Moreover, the
the complexity of the circuit should increase exponentially
until the implementation for the classical computer cannot
longer be performed by the machine. Consequently, we would
reach the state of quantum supremacy where the quantum
computer is the only one capable of carrying and executing
the given task.

2) Encryption: The question of whether quantum comput-
ers are powerful enough to break encryption algorithms is one
of the main concerns for researchers, as it was mentioned pre-
viously. Cybersecurity is now required for the majority of data
that individuals like to share through the internet. Currently,
everything can be done in the internet by just by clicking a but-
ton, from money transactions, purchases, to access to sensitive
private information. In order to keep privacy, and therefore this
information safe, there exists encryption. This process consists
on encoding information by transforming the data to cipher
text. Only authorized parties can decipher this text, to then be
able to access the desired information. The authorized parties
will need to have a key or gain access to the decipher algorithm
in order to obtain the information. That being said, the ability
for quantum computers to be able to decipher, and cipher text
could breakdown the current algorithms for encryption and the
most commonly used methods of encryption to secure our data
such as RSA and Elliptic Curve Cryptosystems. In fact these
two types of public key algorithms can be easily interrupted
with Grover’s and Shor’s algorithms if they are performed by
a fully operative quantum computer [12].

Grover’s algorithm is giving an advantage for quantum
computers to find the public key in a database. The strength
of this algorithm is encountered in the efficiency that this
technique has to search anything in a database that could
contain classified files and encrypted data. Because of this,
sophisticated encryption systems such as AES (Advanced
Encryption Standard) could be negatively affected due to the
performance of the quantum computer debilitating the security
system [13].

Shor’s algorithm has been used in quantum computers to
perform integer factorization and to find the prime factors of
a given integer N. In order to access encrypted data, we should
be able to get and compute the factors of N. N is the number

by which the data is being replaced when encrypted. On the
contrary, the process of finding the prime factors of a large
number could take years for a regular computer. However, the
power that quantum computers give to the Shor’s algorithm
is extremely useful since it generates the processing speed
that the algorithm needs in order to find the factors very
rapidly. Since quantum computers can perform operations in
qubits and superposition, it can reduce the time complexity of
any algorithm. Some researchers have been trying to discover
methods to implement Shor’s algorithm properly with designs
of a practical quantum computer. Some implementations have
been made so far by designing circuits and logic gates such
as an architecture with a linear nearest neighbour qubit array
[14].

The age of practical quantum computers has been her-
alded by technological breakthroughs such as the Transmon
cryogenic 5-qubit machines [15]. Researchers all over the
world are working to perfect the mass production of multi-
qubit devices so that large-scale quantum computers with
millions or billions of qubits [16] can be built. This would be
needed to solve real-world problems. On the other hand, It’s
also critical to develop a quantum ecosystem that includes a
standardized quantum programming language [17], compilers,
and debuggers [18], as well as a quantum hardware abstraction
layer that enables a single quantum program to be compiled for
multiple target quantum hardware platforms, as it is usually
done with classical computers. Furthermore, since all qubit
technologies available today are very fragile and vulnerable to
errors, quantum computers will need extra effort to detect and
correct these errors.

IV. EXPERIMENTAL SETUP

Throughout our research we have learnt high performance
and speed are two of the most important characteristics of a
quantum computers. We are aware that there are many factors
which condition performance when running certain scripts
or algorithms such as available memory, disk, processor or
even internet connection speed. Nevertheless, we understand it
would be useful to test certain algorithms, techniques and tasks
using a quantum computer to actually analyze how it can be
operated by regular users. As we are not able to directly access
a quantum computer, we will be using an online tool created
and developed by IBM which connects to an actual quantum
computer. This tool is named “IBM Quantum Lab”, and it uses
“Jupyter notebooks” with Python. It is easy to access from the
internet and it can be used from any personal computer running
any operating system. Our code will be implemented in Python
and, three different tests using the “timeit” module will be
tested. This module is a method which implements software
profiling in order to measure the performance of a given piece
of code. This performance can measure the resources used by
the CPU and the memory, frequency or duration of the function
calls or wall clock execution time for a piece of code [19]. Our
idea is to utilize this module to compare the performance of
a regular personal computer versus the IBM’s cloud Quantum
Computer. The computer used throughout the experiment was



a MacBook Pro 2019 mounting a 1.4GHz Quad-Core Intel
Core i5 processor, and 8 GB 2133 MHz LPDDR3 of RAM
Memory. As Jupyter Notebooks is used to test our code in the
Quantum Computer, Anaconda and Jupyter were used on our
local machine, as well.

It is important to highlight why we use this method. A
primitive version of our experiment was tested just using
the module “time”. This module is extensively known along
python users since it allows the programmer to measure how
long a computer takes to run a certain script in python. It is
implemented as a stopwatch. It is initialized at the beginning
of the scrip and then, it is stopped at the end of this one
[19]. This method is very convenient to test certain codes or
applications in a specific environment. Although, this method
is not completely accurate since it will vary on the machine
and many different factors such as memory or CPU. This
method will not implement any performance calculations but
a time measurement. Therefore, “timeit” is used since it tests
hypotheses about efficiency of algorithms and Python idioms.
In addition, by default, “timeit” will test each function 100,000
times using the “lambda” function defined by this module.
This number of times is the default testing procedure, but it can
be easily modified by using different methods provided by the
module creation which can be found over its documentation
website. Throughout our experiment this factor will not be
modified, and therefore the experiment will be conducted using
this default parameter.

A. Massive Random Numbers Generation

In order to start testing the IBM Cloud Quantum Computer,
an script was designed to generate decimal random numbers
from 0 to 1, using the ”random” module in python. This piece
of code was set into a loop, and it will be looped as many
times as the user decides it. Then, using a variable which
can be modified by the user, it can be set how many times
the previous loop and the outter one are going to be run.
As an example, if the user enters 100, the loop will execute
100*100. Afterwards, the ”timeit” module is added, and the
performance of the code is measured an average of 100,000
times (by default using ”timeit”). This increases the difficulty
of the calculations significantly. The next results were found
(Table 1) after performing these measurements different times,
and they will be discussed in the next section.

TABLE I
MASSIVE RANDOM NUMBER GENERATOR TESTING COMPARISON.

Rand. Numbers IBM’s Quantum (s) Mac Pro 2019 (s)
10 1.019 0.943

100 7.473 6.476
1000 81.259 72.277

10000 820.639 744.823

It is important to highlight the difficulty found to perform
certain types of computations in the IBM computer. It was
impossible to overpass the 100,000 times.

B. Classic Algorithms Performance

Secondly, a similar process is followed to calculate the
efficiency of two of the most well-known algorithms in the
computer science field: Linear Search and Binary Search.
Linear Search is frequently used to locate a target value
in certain types of data structures, usually arrays or lists,
depending on the programming language used. This method
examines each of the elements, from the first one to the last
one. This algorithm has a complexity of O(n+1/2) [20]. On
the other hand, Binary Search is a frequently used algorithm
which locates a target value in an array or a list by successfully
eliminating half of the structure from consideration. This
algorithm has a complexity of O(logN) [21]. Then, using the
“timeit” module, these searching techniques were tested with
random data structures. As we can see, the complexity of a
Binary Search is lower than a Linear Search and we expect to
find faster run-times for this one. Each of the methods were
tested ten times in each machine and the average of both was
calculated (Figure 2):

TABLE II
CLASSICAL ALGORITHM PERFORMANCE.

Algorithm Name IBM’s Quantum (s) Mac Pro 2019 (s)
Linear Search 3.87 4.48
Binary Search 2.87 3.50

C. For-loop concatenation

Finally, a script is designed to run 100 times a for-loop.
Then, this for-loop is called as many times as the user
decides. For our experiment, we went from 10 to 10000 times.
Again, the ”timeit” module is used to accurately calculate the
performance of the code. These are the results obtained (Table
3):

TABLE III
MASSIVE FOR-LOOP CONCATENATION.

Times Looped IBM’s Quantum (s) Mac Pro 2019 (s)
10 11.675 12.524
100 115.437 119.936

1000 1238.029 1216.072

V. ANALYSIS

It was not expected to find such a wide variety of results.
The analysis will be divided into three different sections to
discuss about each of the experiments performed.

A. Massive Random Numbers Generation

As it was explained before, the ”timeit” module was used to
measure the performance of our code when generating a vast
amount of random numbers from 0 to 1 using concatenated
for-loops. It can clearly be observed on Table 1 that our com-
puter performs better run-times than the IBM Cloud Quantum
Computer. This was very interesting since we expected the
cloud computer to obtain clearly better results. On the next
figure, it can be observed a graph of the time needed to



performed each of the tasks VS the amount of random numbers
to be generated (Figure 1):

Fig. 1. Massive Random Number Generator Test (0,1) - MB Pro 2019 VS
IBM Cloud Quantum Computer

Both computers obtained similar performance when gen-
erating random numbers from 10 to 1,000 times. Then, when
generating numbers for 10,000 times the IBM computer clearly
slowed down and it was beaten by the MacBook Pro. It is
important to highlight neither of both computers were able
to generate numbers for more than 10,000. In addition, it is
important to point out the tendency found for the computer to
carry out these tasks was linear. This means we could be able
to predict the run-time of certain amount of random numbers
calculating the slope of the lines shown on Figure 2.

B. Classic Algorithms Performance

The results obtained for this part of the experiment verifies
the complexity of the tested algorithms. We can observe that
a Binary Search is performed faster than a Linear Search.
This is caused due to the structure of each of the techniques.
The Binary Search does not loop through all the structure but
just half of it, so it has a complexity of O(logN). The Linear
Search algorithm has a complexity of O(n+1/2), and therefore
slower run-times were expected. Our experiment concludes,
in this case, that the Quantum Computer averagely performs
faster searches than our computer. It is able to perform binary
searches in less than 2.87s.

C. For-loop concatenation

Some of the results obtained for the for-loop concatenation
experiment were expected. We expected to encounter longer
run-times than the ones calculated for the random number
generator experiment. Nevertheless, we expected to find a non-
linear tendency (Figure 2) since we are repeatedly using for-
loops which would alter the complexity of the code. It was
expected to found quadratic curves, or higher order tendencies.
We attribute our error to the low number of trials which
could be performed using both computers. At the end of this
experiment, we could just compare three different data points,
as it can be observed on Table 3:

Fig. 2. For-loop Concatenation Test- MB Pro 2019 VS IBM Cloud Quantum
Computer

VI. CONCLUSIONS

The results obtained throughout the experiment phase did
not satisfy our expectations. We expected to find extremely
low run-times using the IBM Cloud Quantum Computer.
Obtaining more data would dramatically improve the results of
our experiment. We propose performance of random number
generation vs. run-time, as well as times-looped vs run-time
could be predicted by calculating the slope produced by the
data gathered. This would proof the linearly behavior of
the Quantum Lab to perform the required tasks during our
experiment. In addition, this could eventually point out the
computational power available for the user by calculating how
many tasks can be performed in a specific period of time.
Although, we do not have the resources to test if this applies
to longer random number generation or loop concatenation
processes.

We understand the processing power of a Quantum Com-
puter is extremely higher than a classical one, as it was
explained throughout this paper. This is the reason why we
cannot attribute the error to the Quantum Computer but to
the interface used to interact with it. We believe the IBM’s
Cloud Service Lab environment does not actually use all the
computational power available to run code. This service uses
a modified version of Jupyter notebooks which we believe
it is stable. IBM is limiting the power a user can utilize.
Furthermore, we ignore if the fluctuations on our internet
connection or the browser used are elements which would
alter the performance of the Quantum Lab environment since
it is run online on IBM’s cloud. Moreover, we encounter a
wide variety of different run-times when performing similar
tasks using the Quantum Lab. In addition, while testing our
code we found the environment was not working many times,
or it had many difficulties to run extremely simple pieces of
code. We do not find reliable the IBM environment to use it
as a daily coding tool or online compiler. Nevertheless, we
extremely recommend it to perform more specific tasks dues
to its versatility.

As a conclusion, we doubt the actual usefulness of the IBM
Quantum Lab since better run-times can be obtained using
regular desktop computer just running Jupyter on Anaconda.



On our future work, we expect to address the issues of the IBM
Quantum Lab environment and understand why the processing
power is so limited.
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